7.3: Translation and Partial Fractions

Let us refresh ourselves on the rules of partial fraction decomposition. For the next two rules let

$$
R(s)=\frac{P(s)}{Q(s)}
$$

where $P(s)$ is a polynomial of degree less than that of $Q(s)$.
Rule 1. (Linear Factor Partial Fractions)
The portions of the partial fraction decomposition of $R(s)$ corresponding to the linear factor $s-a$ of multiplicity n is a sum of n partial fractions, having the form

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{n}}{(s-a)^{n}}
$$

where $A_{1}, A_{2}, \ldots, A_{n}$ are constants.
Rule 2. (Quadratic Factor Partial Fractions)
The portions of the partial fraction decomposition of $R(s)$ corresponding to the quadratic factor $(s-a)^{2}+b^{2}$ of multiplicity n is a sum of n partial fractions, having the form

$$
\frac{A_{1} s+B_{1}}{(s-a)^{2}+b^{2}}+\frac{A_{2} s+B_{2}}{\left((s-a)^{2}+b^{2}\right)^{2}}+\cdots+\frac{A_{n} s+B_{n}}{\left((s-a)^{2}+b^{2}\right)^{n}}
$$

where $A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2} \ldots, B_{n}$ are constants.

Theorem 1. (Translation of the s-Axis)
If $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>c$, then $\mathcal{L}\left\{e^{a t} f(t)\right\}$ exists for $s>a+c$, and

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

Equivalently,

$$
\mathcal{L}^{-1}\{F(s-a)\}=e^{a t} f(t)
$$

Thus the translation $s \rightarrow s-a$ in the transform (s-axis) corresponds to multiplication of the original function of t by $e^{a t}$.

Example 1. Find $\mathcal{L}\left\{e^{a t} t^{n}\right\}, \mathcal{L}\left\{e^{a t} \cos k t\right\}$ and $\mathcal{L}\left\{e^{a t} \sin k t\right\}$.

Example 2. Consider a mass-and-spring system with $m=\frac{1}{2}, k=17$ and $c=3$ which gives the equation

$$
x^{\prime \prime}+6 x^{\prime}+34 x=0 .
$$

If the mass is set into motion with $x(0)=3$ and $x^{\prime}(0)=1$, find the resulting damped free oscillations.

Example 3. Find the inverse Laplace transform of

$$
R(s)=\frac{s^{2}+1}{s^{3}-2 s^{2}-8 s} .
$$

Example 4. Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=t^{2} ; \quad y(0)=y^{\prime}(0)=0
$$

Exercise 1. Solve the damped and forced mass-spring-dashpot system given by

$$
x^{\prime \prime}+6 x^{\prime}+34 x=30 \sin 2 t ; \quad x(0)=x^{\prime}(0)=0 .
$$

Exercise 2. Solve the initial value problem

$$
y^{(4)}+2 y^{\prime \prime}+y=4 t e^{t} ; \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{(3)}(0)=0 .
$$

Example 5. Solve the initial value problem

$$
x^{\prime \prime}+\omega_{0}^{2} x=F_{0} \sin \omega t ; \quad x(0)=x^{\prime}(0)=0 .
$$

Homework. 1-21, 27-35 (odd)

